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During the past decade dramatic progress has been made in calculating the binding energies of molecules.
This is the result of two advances reported in 1989: an accurate method for solving the electronic Schro¨dinger
equation that is applicable to a broad range of moleculessthe CCSD(T) methodsand families of basis sets
that systematically converge to the complete basis set limitsthe correlation consistent basis sets. The former
provides unprecedented accuracy for the prediction of a broad range of molecular properties, including molecular
binding energies. The latter provides a means to systematically approach the complete basis set limit, i.e., the
exact solutions of approximations to the Schro¨dinger equation. These two advances combined with a thorough
analysis of the errors involved in electronic structure calculations lead to clear guidelines for ab initio
calculations of binding energies, ranging from the strong bonds derived from chemical interactions to the
extremely weak binding due to dispersion interactions. This analysis has also led to surprises, e.g., it has
shown that the Møller-Plesset perturbation theory is unsuitable for calculation of bond energies to chemical
accuracy, i.e., with errors of less that 1 kcal/mol. This applies whether one is interested inabsolutebond
energies orrelatiVe bond energies. Although the analysis presented here is focused on the calculation of
molecular binding energies, this same approach can be readily extended to other molecular properties.

1. Introduction

The concept of chemical bonds and the determination of bond
energies are central to chemistry. The making and breaking of
chemical bonds in molecules governs the behavior of many
processes important to our modern world, from the production
of energy and pollutants in an automobile engine to the catalytic
processes that convert raw materials into materials of value to
society. Weaker molecular interactions are also important.
Hydrogen bonds play a critical role in a wide range of chemical
processes, especially biochemical processes. Both inter- and
intramolecular forces determine the properties of polymers, and
a wide range of materials has been developed by varying these
interactions in a systematic manner. Obtaining a detailed
understanding of molecular interactions and molecular binding
energies is one of chemistry’s “Grand Quests.”

With the discovery of the mathematical equation governing
the behavior of atoms and molecules in the mid-1920ssthe
Schrödinger equationsthe pathway was opened for calculating
molecular binding energies from first principles. In fact,
physicists immediately set about computing the binding energy
of H2 with great success. This work not only provided evidence
supporting the radical new quantum mechanics, but was the first
successful prediction of a chemical bond energy. Unfortunately,
what was possible for H2 was not possible for other molecules,
and, as far as the rest of chemistry was concerned, the comment
by P. A. M. Dirac in 19291 held:

“The underlying physical laws necessary for the mathematical
theory of a large part of physics and the whole of chemistry
are thus completely known, and the difficulty is only that the
exact application of these laws leads to equations much too
complicated to be soluble.”
Despite this difficulty, scientists such as Pauling, Mulliken, and
others used the framework provided by quantum mechanics to
discover the general laws which govern the structure and
energetics of molecules. This work had an enormous impact
on chemistry and later led to the award of Nobel Prizes to these
two individuals.

In his classic book,The Nature of the Chemical Bond,
Pauling2 stated that “there is a chemical bond between two atoms
or groups of atoms in case that the forces acting between them
are such as to lead to the formation of an aggregate with
sufficient stability to make it convenient for the chemist to
consider it as an independent system.” This definition is still
valid today, although what is considered an “independent
system” is much different than in Pauling’s time. Through the
development of sophisticated synthetic techniques and sensitive
measurement technologies, experimental physical chemists have
prepared and characterized a wide range of weakly bound
molecular complexes. This is nowhere better illustrated than in
the recent report by Giese, Gentry, and co-workers3 (see also
ref 4) of the synthesis and characterization of the helium dimers
a molecule that is bound by only 1 milliKelvin (0.7 cm-1, 0.002
kcal/mol). This work by experimental physical chemists has
greatly increased our understanding of the full range of
molecular interactions.
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In the present article, we will consider all of the types of
interactions that can give rise to a stable molecule or molecular
complex. Specifically, four types of interactions will be
considered.

Chemical interactions, which result from the intimate
sharing of electrons between the two atoms involved in the bond.
Chemical bonds represent the strongest molecular interactions,
and their strengths vary from tens to hundreds of kcal/mol,
although most fall in the range of 75 to 150 kcal/mol.

Hydrogen-bond interactions, which result from the sharing
of a hydrogen atom between two other atoms. The strengths of
hydrogen bonds vary from a few kcal/mol to tens of kcal/mol
and are typically weaker than chemical bonds by a factor of 10
or more.

Electrostatic interactions, which arise from the classical
electrostatic interactions between the multipole moments of
molecules. In these systems, which we shall collectively refer
to as “weakly bound molecules,” binding energies range from
a fraction of a kcal/mol to a few kcal/mol, another order of
magnitude weaker than hydrogen bonds.

Dispersion interactions, which result from the instantaneous
correlation between the fluctuations in the electronic charge
clouds of the two interacting systems. Binding energies arising
solely from dispersion interactions range from hundredths of a
kcal/mol to a few tenths of a kcal/mol. We shall refer to these
systems as “very weakly bound molecules.”

As can be seen, molecular binding energies vary from
hundredths of a kcal/mol to hundreds of kcal/mol, a variation
of more than 4 orders of magnitude! The challenge to the
quantum chemist, and it is a daunting one, is to develop
theoretical and computational approaches that are capable of
accurately describing molecular binding energies over this wide
range of values.

Although solving the Schro¨dinger equation is still a chal-
lenging task, the development of sophisticated computational
methods for solving the equation, coupled with an exponential
growth in computing power over the past two decades, has made
it possible to compute interaction energies for a broad range of
molecules. These capabilities can be found in a number of
quantum chemistry codes, including GAUSSIAN,5 CADPAC,6

GAMESS,7 MOLPRO,8 ACES II,9 and DALTON.10 For small
molecules, the accuracy of the calculations now rivals that
obtained from experiment for some molecular properties. For
large molecules, such calculations often serve as invaluable
guides to rationalizing the experimental data. Of particular
importance is the fact that the mathematical calculations can
be extended to classes of molecules, e.g., radicals and ions,
whose existence in the laboratory may be too ephemeral to
permit accurate measurements. This is important not only for
obtaining a quantitative understanding of many chemical
processes, e.g., combustion or plasma processing, but it also
provides chemists with a more complete picture of the nature
of the chemical bond.

Despite the increasingly important role that quantum chem-
istry calculations play in modern chemical research, molecular
calculations often appear to be a “black art.” It is difficult for
the novice, if not the expert, to confidently thread his or her
way through the bewildering array of choices presented by
modern-day computational approaches to solving the Schro¨d-
inger equation. What method should be used to solve the
equation? There are more than a dozen ab initio methods for
solving the Schro¨dinger equation, not counting density functional
theory with its large list of exchange and correlation functionals.
What basis set should be used in the calculation? There are

hundreds of basis sets in the literature, some of general use,
others specialized for calculations of one property or another.
As we will show, this situation no longer exists. Because of
advances in the past decade, it is now possible to provide a
clear road map for calculating accurate molecular binding
energies. Although the focus of this article is on the calculation
of binding energies, the approach used here applies to other
molecular properties as well.11 The same analysis is also
applicable to electronic structure methods not explicitly con-
sidered here. Thus, this article presents a prototype case study,
the essence of which could be repeated for many other molecular
properties and computational methods.

In the following section we will discuss the sources of errors
in the solution of the electronic Schro¨dinger equation. It is
critical to be clear about this, because the errors can be of
different sign and, when they are, their cancellation can lead to
confusing results (as we shall see). In this article, we will focus
on two very popular techniques for solving the electronic
Schrödinger equation: Møller-Plesset perturbation theory and
coupled cluster theory. In the third section, we review the
essential features of these two methods. Basis set expansion
techniques are used to solve the Schro¨dinger equation and, so,
in the fourth section, we discuss the selection of basis sets for
molecular calculations. The use of basis sets to convert the
Schrödinger equation into a more readily soluble algebraic
equation has been a real boon in quantum chemistry. However,
it has also been the source of many problems. Finally, with all
of this completed, we discuss the calculation of molecular
binding energies in the fifth and sixth sections.

In this article, we will focus on the solution of the electronic
Schrödinger equation and, therefore, will be concerned withDe,
the negative of the interaction energy at the equilibrium
geometry{Re} of the molecule. By consideringDe, we eliminate
errors associated with the solution of the nuclear Schro¨dinger
equation, although the need to extractDe from the experimental
data can lead to larger experimental uncertainties inDe than in
D0 (because of uncertainties in the vibrational frequencies).

2. Errors in Electronic Structure Calculations

There are two sources of errors in the solution of the
electronic Schro¨dinger equation: thebasis set conVergence error
and theelectronic structure method error. In practice these errors
are often intermingled to the extent that it may not be clear,
even to the experienced researcher, what the relative importance
of the two types of errors is (this knowledge is usually gained
from experience over the course of years of work). It is
nonetheless essential to distinguish between these two types of
errors if we are to understand the limitations of atomic and
molecular calculations.

Assume that a family of basis sets is used to solve the
electronic Schro¨dinger equation, where the members of the
family are specified by the label “n” and that, as “n” increases,
the basis set becomes more and more complete. For any given
basis set “n,” the basis set convergence error inDe is

whereDe(M;n) is the value of the binding energy obtained with
basis set “n” and method “M”, andDe(M;∞) is the value
obtained with a complete basis set, CBS, i.e., asn f ∞. In
other words,De(M;∞) is the value of the binding energy obtained
by exactly solving the Schro¨dinger equation using electronic
structure method “M.” Because of the ordering of the basis sets,
∆De

bs(M;n) will decrease to zero as “n” increases. The detailed

∆De
bs(M;n) ) De(M;n) - De(M;∞) (1)
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form of ∆De
bs(M;n) depends, of course, on the electronic

structure method (“M”) being used.
The basis set convergence error is different than the error

arising from the use of a given electronic structure method “M”
to solve the Schro¨dinger equation (Hartree-Fock, singles and
doubles configuration interaction, second-order perturbation
theory, etc.). The electronic structure method error forDe is

whereDe(M;∞) is defined above andDe(expt’l) is the experi-
mental value of the binding energy.∆De

M is also referred to as
the intrinsic error in the binding energy for method “M.” It is
the error in the binding energy that would result if the
Schrödinger equation was solved exactly using method “M”; it
does not depend on the basis set (n).

To complete the list of error types involved in the solution
of the electronic Schro¨dinger equation, we also need to define
the error associated with a given calculation, i.e., a given choice
of electronic structure method (“M”) and basis set (“n”). The
calculational error is given by

We sometimes refer to∆De
calc(M;n) as theapparent errorto

clearly distinguish it from theintrinsic error for the method
“M”. Note that from eqs 1 and 2 the calculational error is simply
the sum of the basis set and method error:

If the basis set convergence error and the electronic structure
method error have different signs, which, as we shall see below,
they sometimes do, the calculational error can be less than the
intrinsic error. This point is illustrated in Figure 1, which shows
two common error types.12 For Type I, the calculatedDe

approaches the experimental value from below, never reaching
the experimental value even for a complete basis set. In this
case∆De

calc(M;n) is always greater than∆De
M. For Type II,

on the other hand, the calculatedDe overshoots the experimental
De for sufficiently largen. In this case,∆De

calc(M;n) can be
less than∆De

M for somen. In fact, in the figure∆De
calc(M;n)

≈ 0 for n ) 3, leading the unsuspecting researcher to incorrectly
conclude that method “M” and basis setn ) 3 satisfactorily
describe the binding in this molecule. Unfortunately, this
situation is not rare, as will be illustrated by examples discussed
in Section 5.

3. Approximate Methods for Solving the Electronic
Schro1dinger Equation

Since the discovery of the Schro¨dinger equation in 1925-
26, a number of approximate methods have been developed to
solve the electronic Schro¨dinger equation for molecules. In this
work we will focus on two very popular approaches: the
Møller-Plesset perturbation theory (MP2, MP3, MP4, ...) and
the coupled cluster methods (CCSD, CCSDT, ...). Unlike the
Hartree-Fock wave function on which they are based, perturba-
tion theory and coupled cluster methods take the detailed effects
of electron correlation into account, a “must” for accurate
molecular predictions. They are also size-extensive (see refs 13
and 14). This means that the definition of the computed
interaction energies is unambiguous. We will not discuss
configuration interaction methods in this article. “Less than full”
CI methods do not usually provide size-extensive descriptions

of the interactions between closed shell molecules, although it
should be noted that the carefully designed CI methods of Liu
and McLean15 (or generalizations thereof16) do provide a means
of using CI techniques to address problems such as those
discussed here.

3.1. Perturbation Theory Methods. In Møller-Plesset
perturbation theory, it is assumed that electron correlation is a
perturbation to the Hartree-Fock Hamiltonian, i.e.,

where H0 is the Hartree-Fock Hamiltonian andλH1, the
perturbation, is the difference between the Hartree-Fock
averaged interelectronic interaction and the exactΣΣ1/rij interac-
tion in the full Hamiltonian. With the partitioning in eq 5, the
wave function and energy can also be written as a power series
in λ

and the wave function and energy are computed order by order.
For sufficiently small perturbations, onlyΨ0 (the Hartree-Fock
wave function) andΨ1 (the first-order wave function) are
important. For larger perturbations,Ψ2, Ψ3, ... must also be
taken into account.

A wave function throughnth order in perturbation theory is
sufficient to calculate the energy to (2n+1)th order. Thus,E0

+ E1 is computed by taking the expectation value of the
Hamiltonian, eq 5, over the Hartree-Fock wave function and
is just the Hartree-Fock energy. Similarly,Ψ0 and Ψ1

determine bothE2(MP2) and E3(MP3); Ψ0, Ψ1, and Ψ2

∆De
M ) De(M;∞) - De(expt’l) (2)

∆De
calc(M;n) ) De(M;n) - De(expt’l) (3)

∆De
calc(M;n) ) ∆De

bs(M;n) + ∆De
M (4)

Figure 1. Type I and II errors for the calculation of molecular binding
energies.De(∞) refers to the binding energy at the complete basis set
limit.

H ) H0 + λH1 (5)

Ψ ) Ψ0 + λΨ1 + λ2Ψ2 + ... (6)

E ) E0 + λE1 + λ2E2 + λ3E3 + λ4E4 + ... (7)
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determineE4(MP4) andE5(MP5); etc. BecauseH1 contains at
most two-electron operators,Ψ1 just contains double excitations
(D) relative to the Hartree-Fock wave function andE2 andE3

only take double excitations into account. InE2 the contributions
of the double excitations to the energy are independent of one
another; inE3, they are coupled. The second-order correction
to the wave function,Ψ2, contains single, double, triple, and
quadruple (SDTQ) excitations, and soE4 and E5 take single,
triple, and quadruple excitations as well as double excitations
into account.

The computational cost of perturbation theory calculations
increases rapidly with the order of perturbation theory and the
size of the basis set. If the number of functions in the basis set
is N, formal analysis of the perturbation theory equations shows
that second-order perturbation (MP2) theory scales asN5, third-
order perturbation (MP3) theory asN6, and fourth-order
perturbation (MP4) theory asN7. Most correlated molecular
calculations reported to date have used MP2 theory, which
corrects for many of the major deficiencies in the Hartree-
Fock method. With the increasing capabilities offered by modern
computing technology, MP4 calculations have become more
common. There have recently been implementations of both
fifth- and sixth-order17 perturbation theory in the Gaussian
program. However, the steep dependence of these techniques
on the size of the basis set (N8 and N9, respectively) has
prevented their use in all but a restricted set of calculations.

There is one last issue to be addressed in this sectionsthe
question of the convergence of the perturbation theory expan-
sion. Perturbation theory works well when the perturbation is
small, and the theory has been successfully used in numerous
areas in molecular quantum mechanics. It has long been
recognized that the reliance of conventional perturbation theory
on the Hartree-Fock Hamiltonian and wave function limits the
radius of convergence of MPn expansions to those molecules
for which a single configuration is a good approximation.18,19

More recently, it has become apparent that convergence
difficulties in the MPn expansion are not limited to molecules
whose zero-order wave function is poorly described by a single
configuration.20-22 These latter authors found that such classical
single configuration systems as hydrogen fluoride, with a weight
of approximately 95% for the Hartree-Fock wave function in
the MPn expansion, can give rise to expansions that are either
slowly converging or divergent. The physical reason for this
behavior has yet to be firmly established, but Cremer and He17

note that it appears to be associated with the presence of multiple
sets of lone pairs in the same region of space (for a mathematical
analysis of the problem, see refs 20(b) and 23). We will see
evidence of this problem in the MPn calculations discussed here,
although it is less prominent in the calculation ofDe than in
calculation of other molecular properties.21

3.2. Coupled Cluster Methods.The coupled cluster method
is a latecomer to electronic structure theory. It was first
developed to treat the nuclear problem in the late 1950s by
Coester and Ku¨mmel,24 adapted by Cizek25 for quantum
chemical applications, and popularized by Bartlett and co-
workers.26-30 In coupled cluster theory, the wave function is
given by

whereT is a sum of excitation operators

In eq 9, t1 generates all possible single excitations when it
operates onΨ0, t2 generates all possible double excitations, etc.
Truncation of eq 9 att1 + t2 gives the CCSD method, truncation
at t1 + t2 + t3 gives the CCSDT method, and so on. Because of
the exponential form of the excitation operator, the coupled
cluster wave function contains not only all of the excitations
included in T, but all of the products of excitations included in
T. For example, for the CCSD method the wave function is

where the sum extends to the maximum number of excitations
allowed. Thus, the CCSD wave function contains the effects of
triple excitations that are products of three single excitations or
a single excitation times a double excitation (called disconnected
triple excitations); disconnected quadruple excitations that are
products of four single excitations, two single excitations times
a double excitation, or two double excitations; and so on. The
inclusion of higher-order excitations inΨ is very important
because, as Sinanoglu31 first observed, the largest component
of higher-order excitations are often products of lower-order
excitations. Thus, for most molecules,t2t2 is the largest
contributor to quadruple excitations. The connected quadruple
excitations represented byt4 are small because they require all
four electrons to be in the same region of space.

There is a simple, appealing physical picture provided by the
coupled cluster wave function. For a set of noninteracting
electron pairs, sayM molecules of H2 at very large intermo-
lecular separations, the CCSD wave function provides an exact
description of the system. That is, theconnected t1 and t2
excitations plus thedisconnected(t1t1, t1t2, t2t2, etc.) excitations
included in the CCSD wave function are all that are required
to exactly describe the set ofM noninteracting electron pairs.
As the separation between the electron pairs decreases, the
charge clouds begin to overlap and the contribution of the higher
orderconnectedexcitations increases: firstt3 becomes important
(three electrons in the same region of space), and thent4 (four
electrons in the same region of space), and so on. Thus, to the
extent that molecules are composed of well-localized electron
pairs and are well described by the Hartree-Fock wave function,
the CCSD wave function should provide an accurate description
of their electronic structure. In He2, van Mourik and Dunning32

have shown that the contribution of botht3 andt4 to De increases
exponentially with decreasing R and that∆De(t1+t2) .
∆De(t3) . ∆De(t4).

Unfortunately, it has been found that, for typical molecular
geometries, the effects of connected triple excitations (t3) must
be explicitly included in the coupled cluster wave function to
obtain high accuracy. The CCSDT method29 scales asN8 and
thus is computationally very expensive.33 This has led to a
number of attempts to approximate the effect of connected triple
excitations in the coupled cluster CCSDT wave function.28,34

The CCSD(T) method of Raghavachari et al.,34 which includes
the effects oft3 perturbationally, has been found to provide an
excellent compromise between accuracy and computational
cost35,36 (for additional insight into the underpinnings of this
approach, see ref 37). In fact, when used with large basis sets,
the CCSD(T) method yields molecular binding energies and
many other molecular properties that are comparable to those
obtained from all but the most sophisticated experiments (see
refs 38, 39, 40, and 41). The CCSD(T) method scales asN6 for

Ψ ) (1 + t1 + 1
2!

t1t1 + t2 + 1
3!

t1t1t1 + t1t2 + 1
4!

t1t1t1t1 +

1
2!

t1t1t2 + 1
2!

t2t2 + ...)Ψ0 (10)

Ψ ) eT Ψ0 (8)

T ) t1 + t2 + t3 + ... (9)
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solution of the CCSD equations plus anN7 step for the
perturbative calculation of the triple excitations.

4. Correlation Consistent Basis Sets

Since the first application of quantum mechanics to chemistry
by Heitler and London,42 basis sets have been used to convert
the electronic Schro¨dinger equation into an algebraic equation.
At first, the basis sets used were simple representations of the
atomic orbitals and the method was referred to as the “linear
combination of atomic orbitals,” or LCAO, method. Later, as
theoretical chemists began to employ electronic computers to
solve the resulting equations, it became clear that a simple set
of atomic orbitals did not provide the desired accuracysa
molecule, although composed of atoms, is composed of
“deformed” atoms. More flexible atomic sets as well as higher
angular momentum functions are required to represent the
deformation and correlation effects. As a result, modern basis
sets contain several functions of a given angular momentum,
i.e., severals-functions, severalp-functions, and so on, as well
as functions of high angular momentum, e.g., the most accurate
sets available today include up toi-functions.

The main problem with most of the basis sets in common
use today is that they do not provide a well defined path to the
complete basis set (CBS) limit. Although the total energy always
decreases with the addition of functions to a basis set, many
other properties, including molecular binding energies, do not
show continuous, monotonic improvement. The general situation
is not unlike that represented in Figure 2, which plots the binding
energy of water dimer calculated with the MP2 method as a
function of the basis set (labeled by the number of functions in
the set). Although not a scatter plot, no clear convergence pattern

is evident in the figure. Without a well-defined path to the CBS
limit, it is not be possible to separate the contributions to the
readily observed calculational errors. A hierarchy of basis sets,
which provide a systematic approach to a complete basis set,
would allow us to cleanly separate the electronic structure
method error (∆De

M) from the basis set convergence error
[∆De

bs(n)] and enable us to better understand the source of errors
in molecular calculations. The correlation consistent basis sets
provide such a family.

4.1. Construction of Correlation Consistent Basis Sets.43

Although the importance of the basis set in limiting the accuracy
of electronic structure calculations on molecules was well
recognized by the end of the 1960s, the principles involved in
constructing basis sets for use in correlated molecular calcula-
tions were not understood. As a result, the sets used in most
early correlated calculations were based on experience gained
from Hartree-Fock calculations. The first advance came in 1987
when Almlöf and Taylor44 showed that basis sets constructed
from atomic natural orbitals (ANOs) provided accurate solutions
of the molecular Schro¨dinger equation. Further, Almlo¨f and
Taylor found that the occupation numbers of the ANOs fell into
clearly defined groups. Using this fact, they constructed a
hierarchy of contracted basis sets by adding groups of secondary
natural orbitals with nearly equal occupation numbers to the
principal natural orbitals. The accuracy of the calculations
systematically improved as larger and larger ANO sets were
used, up to the limit imposed by the set of primitive Gaussian
functions used to represent the natural orbitals. This concept
was extended by Widmark et al.45 to atoms in the second row
of the periodic chart and by Bauschlicher and co-workers to
the third row,46 including the transition metals47 (see also Pou-
Amerigo et al.48) The major problem with the ANO sets is
efficiency. Any calculation that uses the sets has to compute
integrals over all of the primitive functions included in the set.
Since very large primitive sets are used in constructing the ANO
sets, the cost of integral calculations can be prohibitive for all
but the smallest ANO sets.

At the time that Almlöf and Taylor were exploring the use
of ANO sets, Dunning49 was carrying out a systematic study of
the basis set requirements for describing correlation effects in
atoms. Whereas Almlo¨f and Taylor chose the occupation
numbers of the natural orbitals as a measure of the importance
of ANOs to the wave function, Dunning chose the contribution
that a basis function makes to the correlation energy. This choice
had a significant side benefit: it moved the criterion from one
based on orbitals, which are linear combinations of basis
functions, to one based on the basis functions themselves,
allowing a significant reduction in the number of primitive
functions included in the sets. For the first row atoms Dunning
found that the computed energy lowerings fell into distinct
groups, e.g.,

where ∆Em+1,m(l) is the energy lowering associated with
increasing the number of functions of angular momentum,l,
from m to m+1 (thes andp functions were considered a single
set). Further, the contributions of the three groups to the atomic
correlation energy were well separated, e.g., for the oxygen atom
the first group averaged (with negative and positive ranges as
subscripts and superscripts, respectively)-62.00.0

0.0 mEh, the

Figure 2. Values ofDe for the water dimer computed with the MP2
method and a number of popular basis sets. Calculated values have
been corrected for basis set superposition error using the counterpoise
correction.

∆E1,0(sp) ≈ ∆E1,0(d) (11a)

∆E2,1(sp) ≈ ∆E2,1(d) ≈ ∆E1,0(f) (11b)

∆E3,2(sp) ≈ ∆E3,2(d) ≈ ∆E2,1(f) ≈ ∆E1,0(g) (11c)
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second group averaged-15.0-0.8
+0.5 mEh, and the third group

averaged-3.5-0.6
+0.9 mEh.

With the above information, the schema for constructing
correlation consistent basis sets is clear. The smallest basis set,
the cc-pVDZ set, is formed from the 1s, 2s, and 2p atomic HF
orbitals plus a singles, p, andd primitive Gaussian function.
This yields a [3s2p1d] set. The next basis set, the cc-pVTZ set,
is constructed by adding an optimized set of two primitives-,
p-, and d-functions plus a single primitivef-function to the
atomic HF orbitals, yielding a [4s3p2d1f] set, and so on. This
is the sameaufbauscheme found by Almlo¨f and Taylor,44 except
that primitive basis functions are added to the atomic Hartree-
Fock orbitals, rather than secondary natural orbitals to the
primary natural orbitals. This pattern results in a very systematic
improvement of the basis set. The correlation consistent basis
sets are collectively designated cc-pVnZ, wheren ) 2 represents
the cc-pVDZ set;n ) 3 the cc-pVTZ set;n ) 4 the cc-pVQZ
set; and so on.

Although the correlation consistent basis sets constructed in
the above manner provide an excellent description of the neutral
and singly positive ions of atoms, they do not provide an
adequate description of negative ions. The wave functions for
negative ions are substantially more diffuse than those for the
corresponding neutral atoms, and basis sets must be tailored to
describe anions. Kendall, Dunning, and Harrison50 investigated
the addition of extra functions to the correlation consistent sets
for calculations on anions, explicitly optimizing the exponents
of the additional functions for the negative ions. Based on these
results, Kendall et al. constructedaugmentedcorrelation con-
sistent basis sets, denoted aug-cc-pVnZ, by adding a single
diffuse function to each angular momentum present in the

standard set, i.e., a diffuses-, p-, andd-function to the cc-pVDZ
set, a diffuses-, p-, d-, andf-function to the cc-pVTZ set, etc.
In later studies of the electrical properties of molecules, Woon
and Dunning51 found that additional diffuse functions were
required to describe the higher order electrical properties of
atoms and molecules (polarizabilities, hyperpolarizabilities, etc.).
They defined d(oubly)-aug-cc-pVnZ and t(riply)-aug-cc-pVnZ
sets that were derived from the aug-cc-pVnZ sets by adding a
second (and third) diffuse function for each angular symmetry
present in the original sets. The designations for the correlation
consistent sets are often abbreviated to vnz (cc-pVnZ), avnz
(aug-cc-pVnZ), davnz (d-aug-cc-pVnZ), etc.

Dunning and co-workers have used the above approach to
construct correlation consistent basis sets up ton ) 6, including
basis sets for all-electron calculations, for the first-row atoms
(boron through neon)52 and hydrogen and helium, as well as
similar sets for the second row atoms (aluminum through
argon).53 Correlation consistent sets have recently been published
for the third-row atoms gallium through krypton.54 Work has
been essentially completed on sets for the alkali metals and is
underway on the first-row transition metal atoms.

4.2. Extrapolation to the Complete Basis Set Limit.To
illustrate the convergence behavior of the correlation consistent
basis sets, consider use of the sets to calculate the valence
correlation energies of the first-row atoms, B through Ne. To
the extent that molecules are collections of perturbed atoms,
these calculations provide invaluable insights into the conver-
gence behavior of the correlation consistent sets in molecular
calculations.

In Figure 3a, we plot the absolute values of the valence
correlation energies of the first-row atoms, boron through neon,

Figure 3. Calculation of the valence-electron correlation energy of the first-row atoms, B-Ne, using the CCSD(T) or RCCSD(T) method and the
correlation-consistent basis sets. (a) Total valence-electron correlation energy (in millihartrees). (b) Fraction of the correlation energy recovered for
each atom and basis set, i.e.,Ecorr(n)/Ecorr(∞) (in percent).
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from CCSD(T) or RCCSD(T)55 calculations with the cc-pVnZ
basis sets. Note the smooth, monotonic increase in the magnitude
of Ecorr(n) with increasing basis set size. For the first three basis
sets (n ) 2-4), the magnitude of the correlation energy
increases nearly exponentially with increasingn. This led early
users of the correlation consistent sets to use a simple
exponential function to extrapolate the results forn ) 2-4 to
the complete basis set limit.49,56 However, this function tends
to underestimate the contribution of the sets withn > 4. Drawing
an analogy with the convergence of the correlation energy of
the helium atom with angular momentum, Martin39d proposed
the use of inverse powers of the maximum angular momentum
in the set to estimate the error in the correlation energy caused
by truncation of the basis set expansion (note that for the first-
row atoms considered herelmax ) n for the correlation consistent
sets). In fact, the smooth curves plotted in Figure 3a are based
on the expansion

The root-mean-square deviations of the solid line from the points
are just 0.02 (B), 0.03 (C), 0.05 (N), 0.10 (O), 0.13 (F), and
0.15 mEh (Ne). The predicted valence correlation energies at
the CBS limit are-73.1 (B),-100.9 (C),-129.3 (N),-196.2
(O), -260.5 (F), and-324.4 mEh (Ne). These latter values may
be compared to estimates of the valence correlation energy of
C, O, and Ne of-101.2,-195.5, and-322.8 mEh, respectively,
an early illustration of the accuracy of the CCSD(T) method.
More recently, Halkier and co-workers40 have reported good
success with a simple1/n3 extrapolation based on results from
calculations with two successive basis sets, provided that cc-
pVQZ or larger sets are employed, and Truhlar and co-workers57

have shown that quite useful results are obtained with such a
two point scheme based on the cc-pVDZ and cc-pVTZ sets.
Despite the successes achieved in extrapolating calculated results
to the complete basis set limit, none of the existing functions
has proven to be clearly superior to all of the other functions
(for a discussion of the issues, see ref 58).

In Figure 3b, we plot the percentage ofEcorr[CCSD(T);∞]
recovered by the cc-pVnZ sets for each of the first-row atoms,
B through Ne. The poor performance of the cc-pVDZ set is
obvious. Although the double-zeta set recovers over 85% of
the correlation energy of the boron atom, the fraction of the
correlation energy recovered drops dramatically along the row,
becoming less than 60% for the neon atom. Thus, use of the
cc-pVDZ set to calculate atomic and molecular properties that
are sensitive to electron correlation effects is questionable,
especially for molecules involving atoms from the latter half
of the row. This behavior also compromises trends that involve
changes in the number of electrons predicted using the cc-pVDZ
basis set. Thus, despite its popularity, calculations with the
double-zeta set must be viewed with caution.

The fraction of the correlation energy recovered with the cc-
pVTZ set is not only much higher than that for the cc-pVDZ
set, but its variation along the row from boron to neon is
dramatically lesssfrom 96% (B) to 86% (Ne). Thus, one would
expect the triple-zeta set to provide a far more consistent
description of the electronic structure of molecules and this is
observed to be the case. In fact, the cc-pVTZ set should be
considered the “minimal basis set” to be used in correlated
calculations. Further expanding the basis set, one finds that the
cc-pV5Z set nearly quantitatively recovers the valence correla-
tion energy of the first row atoms, yielding 99% of the estimated
CBS limit for boron to 96% of the limit for neon.

5. Electronic Structure Method Errors for Molecular
Binding Energies

The electronic structure method error, or intrinsic error,
for a molecular binding energy,∆De(M), is given by eq 2:
De(M;∞) - De(expt’l). Thus, to determine the error for electronic
structure method “M,” we must first establish the value of the
binding energy at the complete basis set limit (n ) ∞). As noted
in the previous section, it is possible to extrapolate binding
energies calculated with a sequence of correlation consistent
basis sets to the CBS limit. The extrapolations can be quite
accurate if sufficiently large basis sets are used. In the current
study, we limit our considerations to small molecules for which
calculations could be carried out with basis sets as large as
d-aug-cc-pV6Z. Although some generality is lost by this
limitation, our studies, as well as those of others, indicate that
the conclusions drawn here are broadly applicable. Using this
approach, it is expected that the error in the extrapolated bond
energies is on the order of 0.1-0.2%, significantly smaller than
the intrinsic errors in the methods themselves.

In the current study we limit our considerations to valence
electron calculations. Valence electron calculations are generally
capable of predicting molecular binding energies to an accuracy
of 0.5-1%. However, in discussing the intrinsic errors in the
calculated binding energies, we will, whenever possible, report
the results of calculations that include all of the electrons to
better understand the nature of the residual error in the valence
electron calculations. It should be noted that in carrying out
all-electron calculations it is important to use basis sets designed
for such calculations (see, e.g., ref 52). Use of standard basis
sets in all-electron calculations recovers only a small, often
nonsystematic fraction of the core and core-valence correlation
energy. Because of this, all-electron calculations with standard
basis sets can produce misleading results.

In predicting the binding energies, calculations on all but the
“chemically bound molecules” use the counterpoise method59

to correct for basis set superposition error (BSSE60). This is
critical. If this correction is not made, the “observed” basis set
convergence error is actually a combination of the “true” basis
set convergence error and the basis set superposition error; a
point that is illustrated in Figure 4. Once BSSE has been
eliminated, the remaining error is the basis set convergence
error.61 This is of more than conceptual importance. If BSSE is
not eliminated,∆De

bs(n) can be erratic and it may not be possible
to extrapolate the results to the CBS limit.62 Of course, in the
limit of a complete basis set, BSSE is identically zero and, in
fact, we find that the magnitude of the counterpoise correction
decreases steadily with increasingn. It is interesting to note
that van Mourik et al.62 found that use of the counterpoise
correction often led to a smoother dependence ofDe on n even
for strongly bound molecules.

It is quite possible, and even probable, that binding energies
computed without the counterpoise correction are closer to the
complete basis set limit than the uncorrected values. This
frustrating (or lucky) situation (depending on your proclivities)
is due to the fact that BSSE corrections and basis set
convergence errors are often of opposite sign.

5.1. Chemically bound Molecules.In Table 1, we list the
experimental bond energies63 and the intrinsic errors for the
perturbation theory and coupled cluster methods for a prototypi-
cal set of first-row, diatomic molecules.38,52 The set includes
CH, a covalent, singly bonded molecule; HF, a very ionic, singly
bonded molecule; N2, a covalent, triply bonded, diatomic

Ecorr(n) ) Ea + Eb/n
3 + Ec/n

5 (12)
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molecule; and CO, an ionic, multiply bonded, diatomic mol-
ecule. Although a more extensive set of molecules could be
considered, the current set illustrates the main points to be made
here.

From the intrinsic errors for the bond energies listed in Table
1, we see that the (valence electron) CCSD(T) method predicts
the bond energies to an accuracy of better than 1 kcal/mol, save
for N2, where the error is-1.1 kcal/mol (this still corresponds
to 99.6% of the experimental N2 bond energy). Note that the
intrinsic errors are all negative, i.e., the calculated values
underestimate the experimental values. This is as it should be:
the correlation energy should increase with decreasingR as
should the error. For the singly bonded species, including the
very ionic HF molecule, the errors are just a few tenths of a
kcal/mol. The errors for the multiply bonded molecules are much

larger than those for the singly bonded molecules (as are the
bond energies). The fact that the intrinsic errors for the
CCSD(T) method are larger for the multiply bonded species is
partially due to the fact that the CCSD(T) method is based on
a Hartree-Fock wave function and Hartree-Fock wave func-
tions do not provide a good zero-order description ofπ bonds.
Inclusion of core-valence correlation effects38 reduces the
intrinsic errors inDe[CCSD(T)] to just a few tenths of a kcal/
mol for all species considered.

Omission of the perturbative triples correction in the
CCSD(T) method substantially increases the error in the coupled
cluster method: from-0.2 to-1.0 kcal/mol for CH, from-0.1
to -2.2 kcal/mol for HF, from-1.1 to-10.7 kcal/mol for N2,
and from-0.8 to-8.4 kcal/mol for CO. Thus,connectedtriple
excitations (t3) are critical for accurate predictions of bond
energies with the coupled cluster method. As expected, the
triples correction is far more important for multiply bonded
molecules than for the singly bonded molecules (compare CH
and HF to N2 and CO) as well as for molecules with more
electrons (compare CH to HF).

The MP2 method is clearly of limited use in computing the
bond energies of chemically bound molecules. The errors in
the calculatedDe can exceed 10 kcal/mol and vary dramatically
from molecule to molecule, underestimatingDe(expt’l) by 2.9
kcal/mol for CH and overestimatingDe(expt’l) by 4.2, 11.6,
and 12.7 kcal/mol for HF, N2 and CO, a range of more than 15
kcal/mol. In fact, the behavior observed in Table 1, the
systematic over-prediction of the bond energies of many, but
not all, molecules, has been a major source of confusion in the
use of perturbation theory to compute the bond energies of
molecules. To illustrate this point, in Figure 5, we plot the bond
energy of N2 as a function of basis set for the MP2-4
methods.38b As can be seen, as the basis set increases in size
(and completeness), the calculated bond energies also increase.
In fact, the curves ofDe(n) for both the MP2 and MP4 methods
pass through the experimental value of the bond energy on their

Figure 4. Comparison of basis set superposition error and basis set
convergence error in the calculation of binding energies. Note the
improvement in the convergence behavior of the binding energies after
correction for BSSE.

TABLE 1: Intrinsic Errors in De for a Prototypical Set of
First-row, Diatomic Molecules: ∆De (kcal/mol)a

∆De[CH] ∆De[HF] ∆De[N2] ∆De[CO]

De(expt’l)b 83.9 141.6 228.4 259.3
∆(cv) -0.2 -0.2 -0.8 -0.9
CCSD -1.0 -2.2 -10.7 -8.4
CCSD(T) -0.2 -0.1 -1.1 -0.8
CCSDTc -0.2 -1.7 -1.2
MP2 -2.9 4.2 11.6 12.7
MP3 -1.4 -3.1 -12.6 -8.8
MP4 -0.6 1.1 3.4 5.0
MP5 -1.0

a ∆(cv) refers to the core-valence correction to the experimental
values given in the first row of the table. There is perfect agreement
between the measured and calculated values when the intrinsic error is
the same as the core-valence correction.b For comparison to the current
nonrelativistic calculations, the experimental dissociation energies have
been corrected for atomic spin-orbit effects.c See ref 87.

Figure 5. De(N2) calculated with MP2, MP3 and MP4 methods and
the correlation-consistent basis sets.De(∞) refers to the dissociation
energies at the complete basis set limit andDe(expt’l) to the experi-
mental dissociation energy.
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way to intrinsic errors of+11.6 kcal/mol (MP2) and+3.4 kcal/
mol (MP4). Atn ≈ 3, De(MP2;n) crosses the experimental value
and the calculational error is essentially zero. Unless one was
aware of the dependence ofDe(MP2) onn, it would be tempting
to conclude that the MP2 method with the cc-pVTZ set gives
a very accurate description of the wave function of N2. This is
clearly an incorrect conclusion: the intrinsic error inDe(MP2)
is nearly 12 kcal/mol. Similar behavior is observed for the MP4
method where use of a cc-pVQZ basis set results in near
cancellation of the basis set convergence error and the electronic
structure method error and, thus, a false sense of confidence in
the calculation. This is not an uncommon occurrence in
perturbation theory calculations.21,22,64

The intrinsic errors for the MP4 method are substantially
smaller than those for the MP2 method. However, even the MP4
method does not approach chemical accuracy, i.e., errors of less
than 1 kcal/mol. In addition, the relative errors vary from-0.6
kcal/mol for CH to+5.0 kcal/mol for CO. Thus, with the MP4
method, it is not even possible to reliably predict therelatiVe
bond energies among a heterogeneous set of molecules such as
those listed in Table 1. Similar arguments hold for the MP3
method.

MP5 calculations have been reported on HF.21 The magnitude
of the error inDe(MP5) is nearly identical to that inDe(MP4),
although of opposite sign. This is an example of the convergence
problem in perturbation expansions noted earlier. The results
on HF combined with many other results20,21 caution against
the use of perturbation theory in molecular calculations.
Although one might argue that the MP2 method appears to
improve upon the Hartree-Fock method, one must keep in mind
that the MP2 method is the first term in a slowly or noncon-
verging series and, therefore, its use should also be viewed with
caution.

5.2. Hydrogen-Bonded Molecules.The hydrogen bond is
the most important of the weak molecular interactions. The
concept of the hydrogen bond was introduced into chemistry
by Pauling in the 1939 edition of his bookNature of the
Chemical Bond,2 although others were also involved in unravel-
ing the anomalous physical and thermodynamic properties of
matter resulting from the presence of hydrogen bonds. It is now
widely recognized that hydrogen bonds play a critical role in
many chemical processes, especially biochemical processes.
Hydrogen bond strengths range from less than 4 kcal/mol to
over 40 kcal/mol, depending on the nature of the molecular
species involved, although most fall within the range of 4-10
kcal/mol. Unfortunately, few hydrogen-bonded species have
been characterized to the extent that they can serve as reliable
benchmarks for theoretical calculations.

The HF dimer has been the subject of a number of detailed
studies. Of particular interest are the modeling and experimental
studies of Quack, Suhm, and co-workers65,66 and the experi-
mental studies of Miller et al.,67 Nesbitt and co-workers,68 and
Klemperer and co-workers.69 This combination of studies has
allowed a reliable value ofDe to be extracted from the
measurements ofD0. Klopper, Quack, and Suhm65f report that
De[(HF)2] ) 4.56( 0.05 kcal/mol. Unfortunately, comparable
data does not exist for the prototype hydrogen-bonded molecule,
(H2O)2. The estimate of the equilibrium binding energy of the
water dimer from experimental studies is 5.4( 0.7 kcal/mol,70,71

an unacceptably large error bound for the present purpose.
The HF-HF binding energy derived from the studies of

Klopper, Quack, and Suhm65f is listed in Table 2 along with
the intrinsic errors for the coupled cluster and perturbation theory
methods.72-74 With the exception of the CCSD and MP2

methods, the errors in the calculated binding energies for (HF)2

fall within the stated error bounds,(0.05 kcal/mol. The CCSD-
(T), MP4, and MP3 binding energies are just 0.02-0.03 kcal/
mol smaller than the experimental value. For the CCSD and
MP2 methods, the intrinsic errors are-0.15 and-0.09 kcal/
mol, respectively. So, even the CCSD and MP2 methods predict
more than 96% of the (HF)2 binding energy.

All-electron calculations have not yet been reported for (HF)2.
However, Schu¨tz et al.75 and Klopper and Luthi73b have carried
out all-electron and valence-electron MP2 calculations on the
water dimer and reported a core-valence correction of 0.04 kcal/
mol. The core-valence correction for (HF)2 is expected to be
somewhat smaller than this value (because of the larger atomic
charge of fluorine). Addition of the core-valence correction to
the CCSD(T), MP4 and MP3 values forDe[(HF)2] should bring
these results into almost perfect agreement with the experimen-
tally derived value.

In summary, the CCSD(T) method provides unparalleled
accuracy for the hydrogen-bond energy of (HF)2. In contrast to
chemically bound molecules, third-order and fourth-order
perturbation theory also provide accurate predictions ofDe, and
the intrinsic error for the MP2 method is less that 0.1 kcal/mol.
The available evidence suggests that these conclusions also hold
for the water dimer.56,73 Indeed, these conclusions may be
generally valid if the two molecules involved in the hydrogen
bond are well described by a Hartree-Fock wave function. It
may not hold if the wave function for one or more of the
molecules (or in the case of intramolecular hydrogen bonding,
molecule) have substantial multireference character. In this case,
the coupled cluster methods are expected to be more reliable.

5.3. Weakly Bound Molecules.Weakly bound molecular
complexes, in which the binding is derived mainly from the
electrostatic interactions between molecules, have always posed
a serious challenge for the computational quantum chemist. For
these species, the binding energies fall in the range of a few
tenths of a kcal/mol to a few kcal/mol. In fact, it is common to
quote the binding energies for weakly bound molecules in
wavenumbers, where 1 kcal/mol) 349.76 cm-1, and that will
be done here. In the past, the binding energies for these species
were usually underestimated, often by substantial amounts. Good
agreement was sometimes obtained when the BSSE nearly
canceled the basis set convergence error, but these instances
are clearly fortuitous.

Within the past decade, substantial experimental and modeling
efforts have focused on three weakly bound molecules: N2-
HF,76 Ar-HF,77 and Ar-HCl.78 As for (HF)2, this combination
has led to a detailed characterization of the potential energy
surfaces of these species. Because of these investments, N2-
HF, Ar-HF, and Ar-HCl provide excellent benchmarks for
assessing the accuracy of perturbation theory and coupled cluster
methods for describing the interactions of weakly bound
molecules. The values ofDe, derived from the experimentally
based modeling studies are listed in Table 3 along with

TABLE 2: Intrinsic Errors in De for the Hydrogen Fluoride
Dimer: ∆De (kcal/mol).

∆De[(HF)2]

De(expt’l)a 4.56( 0.05
CCSD -0.16
CCSD(T) -0.02
MP2 -0.09
MP3 -0.03
MP4 -0.02

a Reference 65f.
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the intrinsic errors for the CCSD, CCSD(T), and MP2-4
methods.38c,f,h In this table, information on both the ArHX and
ArXH isomers is given, although the errors in the “experimental”
De are substantially larger for the ArXH isomers than that for
the ArHX isomers (probably even larger than the uncertainties
quoted by the author77,78).

From Table 3 we see that, save for the Ar-FH isomer, the
intrinsic errors for the CCSD(T) method fall well within the
stated error bounds for the experimentally derived binding
energies. The intrinsic error inDe [CCSD(T)] is essentially zero
for Ar-HF, Ar-HCl, and Ar-ClH. It is 17 cm-1 in N2-HF
and-15 cm-1 in Ar-FH, while the estimated error bounds in
these two cases are(30 and(10 cm-1, respectively (as noted
above, the latter uncertainty may be too small). Omission of
the triples correction in the CCSD(T) method substantially
increases the intrinsic errors inDe. The CCSD method under-
estimates the binding energy of N2-HF by 52 cm-1, Ar-HF
by 45 cm-1, and Ar-FH by 36 cm-1.

Given its simplicity, the MP2 method does a surprisingly good
job of predicting the properties of weakly bound molecules (as
it did for hydrogen-bonded molecules). The intrinsic errors for
De range from+35 cm-1 in N2-HF to -16 cm-1 in Ar-FH,
although the percentage error in ArFH (14.7%), ArHCl (17.6%),
and ArClH (22.2%) can hardly be considered exceptionally
good. In ArFH, the error for the MP2 method is comparable to
that for the CCSD(T) method. The MP2 method is nearly as
accurate as the MP4 method. Only for Ar-HCl and Ar-ClH
are significant improvements realized by using the MP4 method.
The errors for the MP3 method tend to be larger than the errors
in either the MP2 or MP4 methods, although smaller than for
the CCSD method.

5.4. Very Weakly Bound Molecules.There is no more
demanding problem than the calculation of the binding energies
of molecules whose binding arises only from dispersion
interactions. Dispersion interactions are very weak, depending
on 1/r6 (or higher powers of1/r). These forces have no classical
counterpart, being due to the internal, quantum mechanical
structure of the two (or more) systems involved in the complex.
Binding energies arising from dispersion forces range from a
few hundredths to a few tenths of a kcal/mol (a few wavenum-
bers to a few hundred wavenumbers).

The rare gas dimers have been well characterized by a
combination of experimental and modeling studies and provide
accurate benchmarks for the electronic structure methods
discussed here. The experimentally derived binding energies for
He2, Ne2, and Ar2 are listed in Table 479 along with the
corresponding intrinsic errors for both coupled cluster and
perturbation theory methods.81,32,38jThe CCSD method predicts
85% of the binding energy in He2, 77% of the binding energy
in Ne2, and 72% of the binding energy in Ar2. The decreased
percentage for Ne2 and Ar2 reflects the increased importance
of connected triple excitations in these latter two species.
Including the triples correction, CCSD(T), reduces the error in
De to just 3% for all three dimers. Thus, the CCSD(T) method
provides an accurate, consistent description of the electronic
structure of the rare gas dimers.

Van Mourik, Wilson, and Dunning38i have reported core-
valence calculations on Ne2 and Ar2 (the K-shell electrons were
not included in the Ar2 calculations). They found the core-
valence correction to be very small in Ne2 (0.05 cm-1). Oddly
enough, the correction was positive, i.e., the core-valence
contribution to the correlation energy is larger for two separate
neon atoms than for Ne2. For Ar2, the core-valence correction
at the CBS limit was predicted to be-0.8 cm-1. Thus, the core-
valence correction accounts for approximately one-third of the
error in De[(CCSD(T)].

Full inclusion of connected triple excitations in the CCSDT
method essentially eliminates the error in the He2 binding
energy. Van Mourik and Dunning32 have shown that the intrinsic
error in De(CCSDT) is nearly zero: connected quadruple
excitations contribute only 0.01-0.015 cm-1 to the binding
energy of this dimer; see also Burda et al.81 Burda et al. also
reported CCSDT calculations on Ne2, but only with the aug-
cc-pVTZ basis set. These calculations predict that inclusion of
full triple excitations will increase the Ne2 binding energy by
0.25 cm-1, or 25% of the remaining error inDe[CCSD(T)].
However, this is a small basis set and, until calculations with
larger basis sets are reported, we will not be able to definitively
establish the intrinsic error in the all-electron CCSDT method
for Ne2.

As expected, neither the MP2 or MP3 methods provide
accurate descriptions of the binding in the rare gas dimers. These
methods do not include triple excitations, and it is known that
triple excitations are important for describing dispersion interac-
tions.82 The MP4 method, which does include triple excitations,
predicts 93% ofDe(He2) andDe(Ne2), and 100.5% ofDe(Ar2).
The accuracy ofDe(Ar2) is somewhat surprising. However, given
the other terms in the perturbation expansion, this result may
be fortuitous. For He2, MP5 calculations have also been carried
out. The intrinsic error for the MP5 method is-0.2 cm-1, or
40% of that for the MP4 method. In fact, the error inDe(MP5)
is the same as that inDe[CCSD(T)]. Thus, the perturbation
theory series for He2 is converging very slowly. This is

TABLE 3: Intrinsic Errors in De for the N2-HF, Ar -HF, and Ar -HCl Weakly Bound Molecules: ∆De (cm-1)

∆De ∆De[N2-HF] ∆De[Ar-HF] ∆De[Ar-FH] ∆De[Ar-HCl] ∆De[Ar-ClH]

De(expt’l) 776( 30 211( 4 109( 10 176( 5 148( 10
CCSD -52 -45 -36
CCSD(T) 17 0 -15 0 -1
MP2 35 -10 -16 31 33
MP3 -36 -31 -31
MP4 38 7 -10 10 7

TABLE 4: Intrinsic Errors in De for the Rare Gas Dimers,
He2, Ne2, and Ar2: ∆De (cm-1)a

∆De(He2) ∆De(Ne2) ∆De(Ar2)

De(expt’l)b 7.59 29.4 99.6
∆(cv) 0.05 -0.8
CCSD -1.1 -6.8 -27.6
CCSD(T) -0.2 -1.0 -2.6
CCSDT 0.0
MP2 -2.7 -10.5 13.4
MP3 -1.1 -7.1 -17.6
MP4 -0.5 -1.9 0.4
MP5 -0.2

a ∆(cv) refers to the core-valence correction to the experimental
values given in the first row of the table. There is perfect agreement
between the measured and calculated values when the intrinsic error is
the same as the core-valence correction.b ∆(cv) Refers to the core-
valence correction to the experimental values given in the first row of
the table. There is perfect agreement between the measured and
calculated values when the intrinsic error is the same as the core-
valence correction.

Feature Article J. Phys. Chem. A, Vol. 104, No. 40, 20009071



unfortunate since the cost of MP5 calculations is comparable
to that of CCSDT calculations, both scale asN8, (although the
CCSDT equations must be solved iteratively), and the intrinsic
error in the CCSDT method is nearly zero for He2.

6. Basis Set Convergence Errors

Having established the electronic structure method errors for
perturbation theory and coupled cluster methods, we may now
turn our attention to the basis set convergence error in the
calculation of molecular binding energies,∆De

bs(M;n) )
De(M;n) - De(M;∞). We will again examine the basis set
convergence errors separately for the various types of interac-
tions considered here: chemically bound molecules, hydrogen-
bonded molecules, weakly bound molecules, and very weakly
bound molecules. For these studies, we will use the CCSD(T)
method because, as shown in the last section, the CCSD(T)
method provides an accurate description of the binding energies
for all of the molecules considered here. However, the conver-
gence behavior of perturbation theory and CCSD methods are
similar to that of the CCSD(T) method, a fact used to advantage
by Dunning and Peterson to approximate CCSD(T) calculations
with very large basis sets.83

6.1. Chemically Bound Molecules.The basis set conver-
gence errors for calculation of the bond energies of the
chemically bound molecules (CH, HF, N2, and CO) are plotted
in Figure 6. Consider first the results of calculations with the
cc-pVnZ basis sets. With the cc-pVDZ basis set,De(CH) is 8.3
kcal/mol from the complete basis set (CBS) limit, and the bond
energies of HF, N2, and CO are 15.1, 26.7, and 17.5 kcal/mol,
respectively, from the limit. In percentages, these correspond
to 10%, 11%, 12%, and 7% ofDe for CH, HF, N2, and CO.
For the cc-pVTZ set, the convergence errors range from 2.3

(CH) to 10.7 kcal/mol (N2), or from 2.8% (CO) to 4.7% (N2).
Even for the cc-pV5Z set, the variation in the convergence error
is 1.7 kcal/mol. Thus, very large basis sets will be required to
calculate either the absolute bond energies or the relative bond
energies of this diverse set of molecules to chemical accuracy,
i.e., with an error of less than 1 kcal/mol.

The above clearly illustrates the difficulties caused by the
varying rates of convergence for single, double and triple bonds,
and ionic and covalent molecules. For a given bond type, on
the other hand, the situation is not so grim. Peterson and
Dunning38e have shown that the rates of convergence of the
CH bond energies in the CHm and C2Hm(m ) 1-4) series are
very similar. With the cc-pVDZ set the spread in the conver-
gence errors is just 4.5 kcal/mol (vs 18.4 kcal/mol above), with
the cc-pVTZ set it is just 1.4 kcal/mol (vs 8.4 kcal/mol above),
and with the cc-pVQZ set the spread drops to just 0.5 kcal/mol
(vs 3.4 kcal/mol above). Because of this consistency, if one
corrects theDe(CH) obtained with the cc-pVTZ set by adding
approximately 2 kcal/mol to the calculated values, the resulting
bond energies agree with the experimental values to within(0.7
kcal/mol.

But even for similar bonds one must be careful.∆De
bs(n) for

the CH bond formed by addition of a hydrogen atom to
acetylene is far different than those of the other bonds in the
series.38e The H-C2H2 bond is formed by breaking one of the
acetyleneπ-bonds as the CHσ-bond is formed. Calculations
show that there is little dependence of the energy of this process
on basis set. In fact, the convergence error is positive for this
bond, i.e., the CBS limit is approached from above, not from
below as is the case for the other CH bonds. The other CH
bonds are formed by simply pairing a radical orbital on the
CHm-1 or C2Hm-1 fragment with the 1s hydrogen orbital. This
has the “standard” type of dependence on basis set illustrated

Figure 6. Basis set convergence errors for CCSD(T) or RCCSD(T) calculations ofDe for (a) CH and HF, and (b) N2 and CO with the standard
(vnz) and augmented (avnz) correlation-consistent basis sets.
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in Figure 6 for CH. Thus, the simple correction given above
cannot be applied to the H-C2H2 bond.

Cancellation of basis set convergence errors is also respon-
sible for the success of the isodesmic reaction scheme84 as a
means of computing molecular bond energies. In an isodesmic
reaction

the numbers of chemical bonds of each type (e.g., single C-H
bonds, double CdO bonds, etc.) are the same on each side of
the reaction. To the extent that the convergence rates of the
C-H, CdO, etc. bonds on the left and right sides of eq 13 are
similar, the calculated∆Erxn will be only weakly dependent on
the basis set. This fact can be used to compute the binding
energy of one of the molecules involved in eq 13 if accurate
values of the remaining three binding energies are known (either
from calculation or experiment). For example, to compute the
energy of the C-Cl bond in C6H5Cl, one could use the reaction

and

Using eq 14b, a rather accurate value of the C-Cl bond energy
can be computed without ever performing calculations on benzyl
chloride with a large basis set.

Comparing theDe’s calculated with the aug-cc-pVnZ sets
with those calculated with the cc-pVnZ sets, we see a marked
difference in convergence behavior only for HF. For HF the
basis set convergence error is reduced from 15.1 to 7.0 kcal/

mol upon augmentation of the cc-pVDZ set. Even for the cc-
pVTZ and cc-pVQZ sets, augmentation reduces the error by
2.4 and 1.0 kcal/mol, respectively. This is characteristic of highly
ionic molecules such as HF. Because of the anion character in
the wave function, such molecules are much better described
by the augmented sets. Note that with the augmented sets, the
convergence behavior ofDe is essentially the same for HF as
for CH. Use of the augmented sets tends to reduce the
differences in the basis set convergence behavior for ionic and
covalent molecules and, thus, can be considered more “univer-
sal” sets. This concept will be further extended in the following
two sections.

6.2. Hydrogen-Bonded Molecules.The basis set conver-
gence errors for the water dimer, (H2O)2, with the standard and
augmented sets are plotted in Figure 7a.40e The importance of
the extra diffuse functions in the augmented sets, a fact first
noted by Feller,56 is clear. The convergence errors for the aug-
cc-pVnZ sets are essentially identical to those for the
cc-pV(n+1)Z sets. Since an aug-cc-pVnZ set for oxygen is
smaller than a cc-pV(n+1)Z set by (2n+3) functions, it is
computationally more efficient to use the augmented sets rather
than the standard sets of equivalent accuracy. Use of the doubly
augmented sets, on the other hand, offers only minor improve-
ments over the singly augmented sets and need not be considered
further. This conclusion applies to all hydrogen-bonded systems
investigated to date.85

For (H2O)2, calculations with the aug-cc-pVnZ sets yield 86%,
94%, and 98% ofDe[CCSD(T)] for n ) 2-4. The absolute
errors are 0.69, 0.28, and 0.10 kcal/mol. Thus, the aug-cc-pVQZ
basis set yields a hydrogen bond energy for (H2O)2 within 0.1
kcal/mol of the complete basis set limit. The basis set
convergence errors for (H2O)2 and (HF)240k calculated with the

Figure 7. Basis set convergence errors for CCSD(T) calculations ofDe for the water and hydrogen fluoride dimers with the correlation-consistent
basis sets. (a) Calculations on (H2O)2 with the standard and augmented basis sets. (b) Comparison of the convergence errors for (H2O)2 and (HF)2
with the augmented basis sets.

A + B f C + D (13)

C6H5Cl + CH4 f C6H6 + CH3Cl (14a)

De(C6H5-Cl) ) De(C6H5-H) +
De(CH3-Cl) - De(CH3-H) - ∆Erxn (14b)
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augmented sets are compared in Figure 7b. As can be seen,
∆De

bs(n) for (H2O)2 and (HF)2 are very similar. This means
that it would be possible to use∆De

bs(n) for (HF)2 to correct
for the basis set convergence error in (H2O)2. It would be
interesting to know how universal this finding is.

6.3. Weakly Bound Molecules.The dependence of∆De
bs(n)

of the two isomers of Ar-HF (ArHF and ArFH) on basis set,
for both the aug-cc-pVnZ and d-aug-cc-pVnZ sets, is plotted
in Figure 8. Both classical electrostatic (e.g., dipole-induced
dipole) and dispersion interactions contribute toDe for Ar-
HF, although the former interactions are dominant. As was the
case for the hydrogen-bonded molecules, (H2O)2 and (HF)2,
augmented sets are required to properly describe the binding in
the Ar-HF complex (which may also be considered a hydrogen-
bonded molecule, although a very weakly bound one). There is
a strong dependence of∆De

bs(n) on basis set. The aug-cc-pVDZ
basis set yields just 61% ofDe(ArHF). The fraction ofDe

recovered increases to 87% for the aug-cc-pVTZ set and to
nearly 96% for the aug-cc-pVQZ set. This can be contrasted to
(H2O)2 where the aug-cc-pVDZ set yields 86% ofDe(CBS) and
the aug-cc-pVTZ and aug-cc-pVQZ sets yield 94% and 98%,
respectively. Thus,De for weakly bound molecules converges
more slowly thanDe for hydrogen-bonded molecules; a clear
indication of the increased difficulty in describing weakly bound
complexes.

As noted in section 5, the binding energy of the ArFH isomer
is only about one-half that of the ArHF isomer (109 cm-1). As
can be seen in Figure 8b, use of the doubly augmented sets
significantly improves the convergence behavior of∆De(ArFH).
In fact, the improvement is of sufficient magnitude to argue
for use of a d-aug-cc-pVnZ set rather than an aug-cc-pVnZ set
for calculations on ArFH. This means that doubly augmented
sets could be needed if the entire Ar-HF potential energy
surface is of interest. However, it should also be noted that the

convergence errors are more comparable for the two isomers
when the aug-cc-pVnZ sets are used. As we shall see in the
next subsection, d-aug-cc-pVnZ sets must be used to obtain an
adequate description of dispersion interactions. Thus, the
behavior of ∆De

bs(n) for the ArFH isomer suggests that
dispersion interactions are more important for the more weakly
bound ArFH isomer than for the ArHF isomer.

6.4. Very Weakly Bound Molecules.The basis set conver-
gence errors forDe(Ne2) are plotted in Figure 9a. The binding
in Ne2 is due entirely to dispersion forces, which have long
been known to place heavy demands on the basis set. These
demands are evident in the figure. In contrast to the description
of weakly bound molecules, we now find that two sets of diffuse
functions, i.e., the d-aug-cc-pVnZ basis sets, are required to
adequately describe the wave function of Ne2. Although the aug-
cc-pV(n+1) sets yield convergence errors that are not too much
larger than those of the d-aug-cc-pVnZ sets, the d-aug-cc-pVnZ
sets have 2(2n+3) fewer basis functions than the aug-cc-pV-
(n+1)Z sets and thus are recommended for calculations on very
weakly bound molecules. Use of the triply augmented sets, on
the other hand, leads to only a minor improvement in the
calculated∆De(n) and need not be considered further.

The d-aug-cc-pVDZ set recovers 62% ofDe(∞). Use of the
d-aug-cc-pVTZ set increases this fraction to 87%, while use of
the d-aug-cc-pVQZ set recovers 96% ofDe(∞). Interestingly
enough, these numbers are essentially identical to those from
the calculations on ArHF, but with the aug-cc-pVnZ sets.

In Figure 8(b)∆De
bs(n) for Ne2 is plotted along withf∆De

bs(n)
for Ar2, wheref ) 0.225 [a scaling factor that minimizes the
difference between the Ne2 and Ar2 convergence errors]. As
can be seen, the∆De

bs(n) curve for Ne2 is very similar to the
“reduced”∆De(n) curve for Ar2. This similarity is not totally
surprising given the fact that the binding of both of these species

Figure 8. Basis set convergence errors for CCSD(T) calculations ofDe for the two isomers of Ar-HF with the augmented correlation-consistent
basis sets. (a) ArHF isomer. (b) ArFH isomer.
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are determined by long-range dispersion forces, which are
largely determined by the polarizability of the Ne and Ar atoms.

7. Path Forward

From the above it is clear that a major breakthrough in the
calculation of molecular binding energies was achieved in the
1990s. The level of accuracy that is now obtainable was all but
unimaginable at the beginning of that decade. But, what if
the desired accuracy is higher than that achievable by the
CCSD(T) method? What about the next step in refining the
calculated binding energies? Also, as noted in section 3.2,
CCSD(T) calculations scale asN7. Does this mean that the
CCSD(T) method is an illusion, prohibitively expensive for
molecules of any real interest to practicing chemists? Finally,
the accuracy of the CCSD(T) method is dependent on extrapola-
tion of the calculated binding energies to the complete basis
set limit. What can be done about the slow convergence of
binding energies with basis set? In this section we will briefly
touch on each of these issues.

7.1. More Accurate Coupled Cluster Calculations on
Molecules. There are two sources of error in the CCSD(T)
method. The first is due to truncation of the coupled cluster
expansion; the second is due to the use of the HF wave function
as the zero-order wave function. The equations for the CCSDT
and CCSDTQ methods have been derived by Bartlett and co-
workers.86 However, use of these methods poses significant
computational problems as CCSDT calculations scale asN8,
while CCSDTQ calculations scale asN10! Nevertheless, the
CCSDT method has been implemented in the ACES II program9

and has been used by Feller,87 Feller and Sordo,88 and Bak et
al.89 to systematically investigate the differences between the
perturbative treatment of connected triple excitations in the
CCSD(T) method and the full inclusion of these excitations in

the CCSDT method. For a range of molecules, these authors
found that the differences were usually small, from 0.1 to 0.7
kcal/mol, with De(CCSDT) being smaller thanDe[CCSD(T)],
see Table 1. The two exceptions to this trend wereDe(C2) and
De(CN). For C2, De(CCSDT) was 2.1 kcal/mol less than
De[CCSD(T)]; for CN,De(CCSDT) is 0.8 kcal/mol greater than
De[CCSD(T)]. In general, a complete treatment of triple
excitations did not improve agreement with experiment. Thus,
a cancellation of errors is at least partially responsible for the
good performance of the CCSD(T) method. No CCSDTQ
calculations with a basis set large enough to be meaningful
(cc-pVTZ or beyond) have yet been reported. So, further work
will be required to understand the convergence of the coupled
cluster expansion.

Both the C2 and CN molecules are poorly described by the
HF wave function. If these errors are due to the inadequacy of
the HF zero-order wave function, the obvious solution to the
problem is to use a multiconfiguration wave function forΨ0.
Unfortunately, the use of multireference wave functions in eq
8 leads to mathematical difficulties in the solution of the
resulting coupled cluster equations. Several approaches have
been developed to address such problems, including the state-
universal multireference coupled cluster method of Kucharski
and Bartlet90 (based on an ansatz originally proposed by Jeriorski
and Monkhorst91) and the state-specific multireference coupled
cluster method of Li and Paldus.92 Both of these methods have
met with some success. However, neither have been bench-
marked as described herein. Additional mathematical and/or
computational work remains to be done to establish an efficient,
theoretically sound multireference coupled cluster method.

7.2. CCSD(T) Calculations on Large Molecules.Since
CCSD(T) calculations scale asN7, doubling the size of a
molecule increases the computing requirements by over a factor

Figure 9. Basis set convergence errors for CCSD(T) calculations ofDe for Ne2 with the augmented correlation-consistent basis sets. (a) Ne2. (b)
Comparison of the errors for Ne2 and Ar2; the Ar2 points have been scaled byf ) 0.225.
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of 100. Given the cost of CCSD(T) calculations on triatomic
and tetratomic molecules, this steep dependence on the number
of basis functions would seem to rule out calculations on large
molecules. However, advances in both computing technology
and algorithms for coupled cluster calculations are pushing this
approach to larger and larger molecules. Using massive paral-
lelism, computers capable of 1 trillion arithmetic operations per
second (TFLOPS) are already in place, e.g., at the San Diego
Supercomputer Center, and computers capable of 100 TFLOPS
are expected to become available within the next four years.
Although few computational chemistry codes can exploit this
level of parallelism, the high-performance computational chem-
istry group at the Pacific Northwest National Laboratory,
working with a worldwide group of collaborators, has recently
released a new code, NWChem,93 which is capable of perform-
ing coupled cluster calculations on terascale computers. With
NWChem, it should be possible to routinely carry out
CCSD(T) calculations on molecules containing 20 or more
atoms with a cc-pVQZ basis set on the 31/2-TFLOPS computer
to be installed at DOE’s National Energy Research Scientific
Computing Center (Lawrence Berkeley National Laboratory)
later this year.

The scaling laws given above assume that the calculations
are carried out in terms of the canonical, delocalized Hartree-
Fock orbitals. Although anN5 step is required to transform the
two-electron integrals over atomic orbitals (AOs) to integrals
over molecular orbitals (MOs), this approach has a number of
advantages. For example, in terms of the canonical HF orbitals,
the number of double excitation amplitudes that must be
calculated in the CCSD equations is1/2(nonv(nonv+1)), where
no is the number of occupied orbitals andnv is the number of
virtual orbitals (N ) no + nv). If the equations were instead
written in terms of the AOs, there would be1/2(N2(N2+1))
amplitudes. If we assume thatnv . no, there will be (nv/no)2

more amplitudes in the AO case than in the MO case. For the
aug-cc-pVTZ set,nv ≈ 10no, so there will be 100 times more
AO than MO amplitudes. This argument, however, neglects the
efficiencies that could be realized by screening. Screening has
long been used in HF calculations and has been found to reduce
the formalN4 scaling toN2 - N3 (with a few more tricks, linear
scaling is even possible for sufficiently large molecule94). Just
as in the HF case, screening the contributions to the correlation
energy can reduce the formal scaling of correlated calculations
to far less than those predicted by the scaling laws.

To take maximum advantage of screening, the equations for
the coupled cluster methods must be rewritten in terms of AOs
rather than MOs. It is in the localized AO basis, rather than the
delocalized MO basis, that the decay of the interaction integrals
with distance can be most readily exploited. This has recently
been done for the CCD method by Scuseria and Ayala.95 By
examining a number of test cases, these authors showed that,
for sufficiently large molecules, the CCD equations could be
solved just as efficiently in the AO basis as in the MO basis.
Because the effectiveness of the screening procedure will
increase with molecule size, the question is not whether the
use of AOs is more efficient than the use of MOs, but where
the crossover point occurs. The preliminary studies of Scuseria
and Ayala95 suggest that the crossover point for extended
molecules may occur around 10-20 atoms (the exact crossover
point depends on a number of factors, including the basis set,
the shape of the molecule, etc.).

It is also possible to base correlated calculations on localized
molecular orbitals instead of the delocalized, canonical HF
orbitals. This approach, which was first put forward by Pulay

and co-workers,96 has recently been applied to coupled cluster
methods by Werner, and co-workers.97 Their algorithm uses a
set of orbitals obtained by combining localized HF MOs with
AOs projected onto the HF orbitals. Because of the localized
nature of the MOs, correlation between electrons in orbitals that
are widely separated can be neglected. This method has been
shown to lead to much improved scaling with molecular size.
However, it involves additional approximations relative to the
algorithm put forward by Scuseria and Ayala.95

Save for the HF and density functional methods, the impact
of reduced scaling algorithms has yet to be felt in chemistry.
As the above discussion shows, reduced scaling algorithms for
correlated molecular calculations are imminent. When these
algorithmic advances are combined with the advances in
computing technology wrought by massive parallelism, the
impact will be truly revolutionary. Problems that currently seem
intractable will not only become doable, they will become
routine.

7.3. Slow Convergence of Basis Set Expansions.The slow
convergence of molecular binding energies with basis set is a
result of the fundamental inability of basis set expansions to
represent the wave function as the interelectronic distance (rij)
approaches zero. For a two-electron system, it can be shown
that (un-normalized)98

This is a result of the singularity in the electron-electron
interaction (1/r12) when r12 f 0 and is analogous to the
electron-nuclear cusp condition. Expansions in a basis set of
one-electron functions cannot reproduce this behavior. Although
it is beyond the scope of the present paper to discuss many-
electron approaches to the calculation of molecular binding
energies (see the review by Klopper99), it is worthwhile to note
that Kutzelnigg, Klopper, and co-workers100 have developed an
efficient scheme to include terms linear inr12 in the wave
function expansion. Inclusion of linearr12 terms ensures that
eq 15 is satisfied and substantially improves the rate of
convergence of the calculations. Closure relations are used to
eliminate the many-electron integrals that arise inr12-dependent
wave functions.

The coupled cluster equations in the linearr12 formalism,
CC-R12, have been derived by Noga and Kutzelnigg100j and
implemented in DIRCCR12 by Noga and Klopper101 [see also
ref 100k]. These authors have shown that CCSD(T)-R12
calculations can provide essentially converged results.100,102

However, large basis sets, slightly larger than the aug-cc-pV5Z
basis set, must be used to ensure the accuracy of the closure
approximation. Nonetheless, the CCSD(T)-R12 method is a
significant advance when high accuracy is sought. For example,
for the four chemically bound molecules considered here, the
convergence errors in calculations ofDe[CCSD(T)] with the aug-
cc-pV5Z set are-0.18 (CH),-0.15 (HF),-0.70 (CO), and
-1.45 kcal/mol (N2). While the errors inDe(CH) andDe(HF)
may be acceptable, those inDeCO) andDe(N2) are not.

8. Conclusions

The work presented in the previous sections clearly establishes
that quantum chemists achieved a major advance in the ab initio
calculation of molecular binding energies (De) in the 1990s. It
is now possible to calculate accurate binding energies for a broad
range of molecules, from those bound by very weak dispersion
interactions to those bound by the strongest chemical interac-
tions. This advance is a result of the development of new

Limr12f0 Ψ(r12) ) 1 + 1/2r12 (15)

9076 J. Phys. Chem. A, Vol. 104, No. 40, 2000 Dunning



electronic structure methods (the coupled cluster methods) and
basis sets (the correlation consistent basis sets) for solving the
Schrödinger equation as well as a detailed understanding of the
errors that arise in the calculation of binding energies. In this
article we discussed the sources of the errors and then
systematically analyzed the errors in the calculation of molecular
binding energies for chemical interactions (“chemically bound
molecules”), hydrogen-bonded interactions (“hydrogen-bonded
molecules”), electrostatic interactions (“weakly bound mol-
ecules”), and dispersion interactions (“very weakly bound
molecules”). The binding energies associated with these interac-
tions range from hundreds of kcal/mol to a few hundredths of
a kcal/molsa variation of 4 orders of magnitude! This analysis
leads to clear guidelines for the choice of electronic structure
method and basis set to use in the calculation of molecular
binding energies. Let us recap our findings.

Theelectronic structure method errorin the binding energy
is the error inherent in a given electronic structure method, i.e.,
it is the difference between the value of the binding energy
computed with a complete basis set and the experimental binding
energy. This error is also referred to as the intrinsic error for
the method. In the current study we limited our considerations
to valence-electron calculations; such calculations are generally
capable of predicting molecular binding energies to an accuracy
of 1/2 to 1%. The results from all-electron calculations were
noted whenever they were available to quantify the magnitude
of the core-valence correction. From the work presented here
and elsewhere38-41 we can draw the following conclusions.

Coupled Cluster Methods.The CCSD(T) method provides
an accurate description of the electronic structure of all of the
molecular systems considered. The calculated binding energies
are in excellent agreement with the experimental values as
follows. (a) For chemically bound molecules, hydrogen-bonded
molecules, and weakly bound molecules, the intrinsic errors in
binding energies (De) computed with the valence-electron
CCSD(T) method are less than 1% (and often less than 0.5%).
For chemically bound molecules, this is usually close to
chemical accuracy, i.e.,(1 kcal/mol. (b) For very weakly bound
molecules the error is somewhat larger; it is approximately 3%
for the rare gas dimers. (c) Inclusion of core-valence and
relativistic effects in calculations on strongly bound molecules
reduces the intrinsic error in the CCSD(T) method to well under
one kcal/mol.38,46,103-105

Inclusion of full triple excitations, the CCSDT method, in
calculations ofDe for strongly bound molecules leads to slightly
larger errors than does the CCSD(T) method.87-89 Thus, the
excellent agreement achieved for the CCSD(T) method is partly
a result of compensating of errors. However, the observed
differences are usually just a few tenths of a kcal/mol, although
they can be larger for molecules that are poorly described by
the HF wave function.

For weakly bound molecules, specifically He2, the intrinsic
error in the CCSDT method is only on the order of 0.1% ofDe.

Omission of the perturbative triples correction in the CCSD
method substantially increases the error relative to that for the
CCSD(T) method. The CCSD method does not provide accurate
predictions of molecular binding energies, although it clearly
provides semiquantitative trends.

Perturbation Theory Methods. Perturbation theory methods
are unsatisfactory for describing strongly bound molecules as
the perturbation series converges slowly or even diverges and
does not yield chemical accuracy (intrinsic errors of less than
1 kcal/mol) even at fourth (or fifth) order perturbation theory.

Perturbation theory methods appear to be useful for describing
hydrogen-bonded molecules and may be useful for treating some
weakly bound molecules (electrostatic interactions); even the
MP2 method performs satisfactorily in these cases. Perturbation
theory methods are marginally useful for describing the binding
in very weakly bound molecules. The series converges very
slowly, e.g., for He2 the MP5 method, anN8 method, is no more
accurate that the CCSD(T) method, anN7 method.

Thebasis set conVergence erroris the error in the molecular
property calculated with a given basis set relative to that obtained
with a complete basis set. The functional form of the error
depends on the correlation method used. From the work
presented here and elsewhere,36,38-41 we can draw the following
conclusions.

Correlation Consistent Basis Sets.Correlation consistent
basis sets, cc-pVnZ, provide a hierarchy of basis sets with
accuracy (i.e., completeness) systematically increasing withn.
Binding energies computed with the sets appear to converge
smoothly to the complete basis set limit and can be extrapolated
to that limit with reasonable error bounds.

The basis set convergence error for the bond energies of
different types of chemical bonds (covalent, ionic, single, double,
triple, ...) differ significantly. Thus, for a general set of
molecules, large basis sets will be required to achieve either
high absolute or high relatiVe accuracy. The convergence
behavior of similar bonds in different molecules differ far less,
and more computationally tractable basis sets can provide high
relative accuracy for these bonds. The isodesmic reaction scheme
can also be used to decrease the dependence on basis set.

Different families of correlation consistent basis sets are
required to describe different types of molecular interactions.
(a) Standard sets provide an excellent description of covalent
molecules. (b) Augmented sets are required to efficiently
describe highly ionic molecules, hydrogen-bonded molecules,
and weakly bound molecules (i.e., those bound by electrostatic
interactions). (c) Doubly augmented sets are required to describe
very weakly bound molecules where the binding is mainly due
to dispersion interactions.

Convergence to the complete basis set limit is fastest for
strongly bound molecules with the aug-cc-pVTZ set yielding
96-98% of De(∞), and slightly slower for hydrogen-bonded
molecules with the aug-cc-pVTZ set yielding 93-94% of
De(∞). For weakly bound molecules an aug-cc-pVTZ set yields
just 85-87% ofDe(∞), while a d-aug-cc-pVTZ set is required
to achieve 85-87% ofDe(∞) for very weakly bound molecules.

A major source of confusion in assessing the accuracy of
calculations was identified.38b The calculational error, which
is the error for a given electronic structure method and basis
set, is the sum of the electronic structure method error and the
basis set convergence error. If the latter two quantities are of
different sign, the errors may nearly cancel for some choice of
basis set (n). This is often the case for MP2 and MP4
perturbation theory calculations. These methods overestimate
De for many strongly bound molecules (three of the four
considered here), and the resulting cancellation of the conver-
gence error and the method error could lead the unsuspecting
researcher to erroneously conclude that a given calculation is
very accurate.

The approach outlined here for analyzing the requirements
for the calculation of molecular binding energies can be readily
extended to other molecular properties. In addition, it can be
readily extended to electronic structure methods not considered
here. For an excellent example of the application of these
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concepts to the calculation of atomization energies and reaction
enthalpies, the reader is referred to a recent article by Bak et
al.106

With the advent of parallel supercomputers capable of trillions
of arithmetic operations per second and the implementation of
new algorithms that take advantage of “reduced scaling”
techniques, it will be possible to extend coupled cluster
calculations to a broad range of molecules important in
combustion chemistry, environmental chemistry, chemical vapor
deposition, and industrial processing. This will extend the
revolution begun in the 1990s to the real world of chemistry.

Acknowledgment. This work benefited from the efforts of
many colleagues at the Pacific Northwest National Laboratory.
In particular, I wish to thank Drs. David E. Woon and Kirk A.
Peterson, who were involved in this work almost from the
beginning and helped shape its evolution. Other colleagues who
contributed significantly to the work described herein include
Drs. Tanja van Mourik, Angela K. Wilson, David Feller, Ricky
A. Kendall, and Robert J. Harrison. Discussions with Drs. David
A. Dixon, Michel Dupuis, and Lawrence B. Harding are
gratefully acknowledged. The manuscript benefited from the
comments of Drs. Feller, Peterson, and Karl K. Irikura as well
as the two referees. This work was supported by the Division
of Chemical Sciences in the Office of Basis Energy Sciences
of the U.S. Department of Energy at Pacific Northwest National
Laboratory, a multiprogram national laboratory operated by
Battelle Memorial Institute, under Contract No. DE-AC06-
76RLO 1830. Computing resources were provided by the
Division of Chemical Sciences and by the Division of Math-
ematical, Information, and Computational Sciences at the
National Energy Research Scientific Computing Center (NER-
SC) at Lawrence Berkeley National Laboratory.

References and Notes

(1) P. A. M. Dirac,Proc. R. Soc. A1929, 123, 714.
(2) Pauling, L.The Nature of the Chemical Bond; Cornell University

Press: Ithaca, NY; 1939.
(3) (a) Luo, F.; McBane, G. C.; Kim, G.; Giese, C. F.; Gentry, W. R.

J. Chem. Phys.1993, 98, 3564. (b) Luo, F.; Giese, C. F.; Gentry, W. R.J.
Chem. Phys.1996, 104, 1151.

(4) Schöllkopf, W.; Toennies, J. P.J. Chem. Phys.1996, 104, 1155.
(5) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb,

M. A.; Cheeseman, J. R.; Zakrzewski, V. G.; Montgomery, J. A.; Stratmann,
R. E.; Burant, J. C.; Dapprich, S.; Millam, J. M.; Daniels, A. D.; Kudin, K.
N.; Strain, M. C.; Farkas, O.; Tomasi, J.; Barone, V.; Cossi, M.; Cammi,
R.; Mennucci, B.; Pomelli, C.; Adamo, C.; Clifford, S.; Ochterski, J.;
Petersson, G. A.; Ayala, P. Y.; Cui, Q.; Morokuma, K.; Malick, D. K.;
Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Cioslowski, J.; Ortiz, J.
V.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.;
Gomperts, R.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng,
C. Y.; Nanayakkara, A.; Gonzalez, C.; Challacombe, M.; Gill, P. M. W.;
Johnson, B. G.; Chen, W.; Wong, M. W.; Andres, J. L.; Head-Gordon, M.;
Replogle, E. S.; Pople, J. A.Gaussian 98 (ReVision A.9); Gaussian, Inc.:
Pittsburgh, PA. For further information, see: http://www.Gaussian.com/
index.htm.

(6) Amos, R. D.; Alberts, I. L.; Andrews, J. S.; Colwell, S. M.; Handy,
N. C.; Jayatilaka, D.; Knowles, P. J.; Kobayashi, R.; Laidig, K. E.; Laming,
G.; Lee, A. M.; Maslen, P. E.; Murray, C. W.; Rice, J. E.; Simandiras, E.
D.; Stone, A. J.; Su, M.-D.; Tozer, D. J.CADPAC: The Cambridge Analytic
DeriVatiVes Package Issue 6, Cambridge,1995. For further information,
see: http://ket.ch.cam.ac.uk/software/cadpac.html.

(7) Schmidt, M. A.; Baldridge, K. K.; Boatz, J. A.; Elbert, S. T.;
Gordon, M. S.; Jensen, J. H.; Koseki, S.; Matsunaga, N.; Nguyen, K. A.;
Su, S.; Windus, T. L.; Dupuis, M.; Montgomery, J. A.J. Comput. Chem.
1993, 14, 1347. For further information, see: http://www.msg.ameslab.gov/
GAMESS/GAMESS.html.

(8) Werner, H.-J.; Knowles, P. J.; Amos, R. D.; Berning, A.; Cooper,
D. L.; Deegan, M. J. O.; Dobbyn, A. J.; Eckert, F.; Hampel, C.; Hetzer,
G.; Leininger, T.; Lindh, R.; Lloyd, A. W.; Meyer, W.; Mura, M. E.;
Nicklass, A.; Palmieri, P.; Peterson, K. A.; Pitzer, R. M.; Pulay, P.; Rauhut,
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